

Joey Heinen
12/13/13

Brotherhood: A Case Study in Emulation and Preservation of MIDI

The oft cited expression in the field of archiving states “preservation without
access is pointless.”1. The concept of “access” is conventionally applied to the physical
elements and, in the case of moving image or dynamic media, the essence or digital
stream of the associated media. In the case of complex media art, specifically custom-
designed software and coding languages, the notion of access takes on a unique new
set of definitions given its complexities and interdependencies. In acknowledging the
breakneck pace in which new technologies and programming languages develop
paralleled with the methodical upkeep of obsolete operating systems and programming
interfaces, its entirely possible that the “essence” of these artworks will gradually be left
behind or evolve to a place where the “original” work is no longer evident. Similarly,
computer-based art works are in some ways at the mercy of the current state of
technology, and works that incorporate these technologies are often essential products
of their time. Will future emulation or data migration treat these works kindly when
viewed in a contemporary setting? Is it not just as important to acknowledge that future
instantiations of the same work, whether based on the same structure as the original or
not, are in fact each new and unique expressions? Perhaps in the example of computer-
based art that “access” means not just availability of the essence in a physical setting
(i.e. the gallery) but documentation of the historical and technological subjectivity of the
original and each successful iteration of the work.

The interactive installations of Steina and Woody Vasulka were some of the first
examples of artwork which incorporated software programs that were designed to yield
robotic or audio-visual reactions in response to the visitor. For their project The
Brotherhood, they designed this concept long before there were tools on the market to
sense and interpret human interaction in a language that a computer could understand
(e.g. Arduino), a big leap of faith for everyone involved. In order to achieve this, they
engaged in a relationship with Russ Gritzo, an electrical engineer at Los Alamos Labs,
in the early 1990s who designed a software program to achieve this goal.2 The essence
of the three programs (INTERCOM, UNICOM, MINICOM), was a means of synthesizing
multiple sensors which were fed through an algorithm for multiple and sometimes
random reactions. The distinction between these three software programs and their
relation to one another will be discussed later. The installation was realized in a six-part
series, each part incorporating a different means of taking user-generated inputs and
translating them into robotic or algorithmic outputs. The Maiden, part IV of this
installation, asks the visitor to speak into a microphone in order to activate an electro-
pneutronic sculpture. Based on the velocity and pitch of the sounds generated by the
visitor, the sculpture will expand, contract, and move in ways that mirror the visitor’s

1 The Committee for Film Preservation and Public Access, “Preservation Without Access Is Pointless,”
1993. http://www.loc.gov/film/pdfs/fcmtefilmprespubaccess.pdf, last accessed 12/13/13
2 Vincent Bonin, “Woody Vasulka: The Brotherhood,” 2001. http://www.fondation-
langlois.org/html/e/page.php?NumPage=464, last accessed 12/13/13

speaking voice. Other examples of Brotherhood involve user interfaces such as drum
pads, remotes, alphanumeric keyboards, and tables and outputs such as video
sequencers, light displays, roving cameras/spotlights, and laser transcription.

The language for translating information from the sensors to the computer’s OS
language and out to the related hardware was written in C with sensor inputs and
computational outputs expressed through the language of MIDI. MIDI (Musical
Instrument Digital Interface) was one of the first protocols for translating analog musical
notation into a digital bit structure. Russ Gritzo admitted that at that time MIDI proved to
be an unconventional approach towards abstracting sensor outputs given that the
language is more conventionally used to generate sound scores that to be a language
of spatial and movement commands.3 Nonetheless, it was important to the Vasulkas
that the interaction between humans and machine was organic and did not come off as
sterile or too responsive. In other words, they wanted it to appear that the machine or
computer was reacting to the user as a human might, not how a subservient and
exacting machine might. As MIDI is based on a continuos string of user-generated data,
a concept that will also be explored in full later, this meant that the machines could
respond in a continuous, algorithmic way rather than simply performing a pre-
programmed menu of tricks. Reactions would be precise enough that it would be clear
to the visitor that their impulses yielded clear and tangible results but organic enough
that even slight changes in nuances would alter the responses, creating a seemingly
autonomous reaction from the machine.

Another important aspect of this piece was based on the capabilities of operating
systems for microcomputers that were available at this time. An essential aspect of this
piece was an Interrupt Service Routine (ISR) which, in the early 90s, could only be
found in DOS. An ISR essentially aided the computer in clearing the queue of user-
generated impulses and acts of translating those inputs into outputs. Since sensors
needed to be piping in new user-generated data continuously so as to appear
responsive, there needed to be a way for this data to refresh itself while still being run
off the same script.4 By interrupting this flow of information the computer could
understand these impulses as unique data strings and not as endless commands which
would otherwise be difficult to program and result in lost or ignored commands. Of
course, later OS models began to incorporate ISR and were more broadly adopted
sparking a shift from DOS to Linux. The shift to Linux was also sparked by its uptake as
the preferred OS in more modern computers throughout the 90s, giving Linux an
advantage as computer processing speeds and networking capabilities developed more
quickly.5

A final major consideration, if not more significant than OS in how this piece is
technologically grounded, is the related hardware. It would perhaps be misleading to
say that ISR was introduced with DOS when in fact it was a feature that was made
possible by new achievements in microprocessors. The Intel 8086 was the first

3 Russ Gritzo, personal interview, 08/05/13
4 BonaFide OS Development “Interrupts, Exceptions, and IDTs: Part 1 - Interrupts, ISRs,” 2003.
http://www.osdever.net/tutorials/interrupts.1.php, last accessed 12/13/13
5 Russ Gritzo, personal interview, 08/05/13

microprocessor chip that was designed with ISR capabilities that was implemented on a
microcomputer6, the IBM 8086 being the first computer on which methods for The
Brotherhood were tested. It was also one of the most widely adopted chips in PCs
throughout the 80s and early 90s. As greater memory, processing speed, and portability
became a requirement, the team moved on to use the Toshiba T1200XE which also
used the Intel 8086 chip.7

Given the unique timeline of this six-part work amidst an era of great
computational development, and also the unusual incorporation of MIDI as a
programming language, this piece was highly ahead of its time and is grounded in some
rather precise methods in computer science. Fortunately the source code and
configuration for these installations were very well-documented and communication
between the Vasulkas and Russ Gritzo is ongoing. Nonetheless, investigation of the
feasibility for emulation or compiling will require further exploration as we consider the
precise interdependencies of the hardware and software elements.

Emulation is considered one of three broadly-defined approaches towards
providing access to digital material, the other two being migration and reinterpretation.8

Of the three, migration is considered to be more of a preservation approach as it
involves translating the original code and file formats into more widely-adopted and
renderable digital streams and wrappers, ensuring long-term access to the material. Of
course, in approaching this from the perspective of an installation artwork where
behaviors of software or the aesthetic front-end interface of a piece may be more vital
than the actual code and back-end processes, migration may alter the essence of the
piece by stripping it of its original dependencies - in fact, in some instances it may result
in a bitstream that is completely inoperable since it requires specific hardware and
operating systems under which to run.9 Reinterpretation involves rewriting the code or
introducing new interpreters in order to accomplish nearly identical results but in using
different languages, processors or platforms - essentially different means to accomplish
the same ends. Naturally this is not considered a preservation approach as it introduces
enormous questions of authenticity given the fact that the original bitstream is in no way
maintained across successive iterations of the piece. For this reason, reinterpretation is
chosen more as an access approach and more often in instances of a last-ditch effort
for a physical reinstallation of the work. Some of these access approaches can be used
in tandem, such as Grahame Weinbren and Roberta Friedman’s The Erl King which
was reinstalled for the Guggenheim’s exhibit Seeing Double: Art and Emulation In
Practice. Acknowledged as “not a true emulation,” the installation team (including
Weinbren and Friedman) concluded that the source code, a compiled version of

6 Benj Edwards, “Birth of a Standard: The Intel 8086 Microprocessor,”
http://www.pcworld.com/article/146957/article.html, last accessed 12/13/13
7 Russ Gritzo, “ExhFour,” http://www.vasulka.org/archive/ExhFOUR/Brno/brno.pdf, last accessed
12/13/13
8 Ben Fino-Radin, “Digital Preservation Practices and the Rhizome Art Base,”
http://media.rhizome.org/artbase/documents/Digital-Preservation-Practices-and-the-Rhizome-ArtBase.pdf,
last accessed 12/13/13
9 Jeff Rothenberg, “Avoiding Technological Quicksand: Finding a Viable Technical Foundation for Digital
Preservation,” http://www.clir.org/pubs/reports/rothenberg/pub77.pdf, last accessed 12/13/13

http://www.clir.org/pubs/reports/rothenberg/pub77.pdf
http://media.rhizome.org/artbase/documents/Digital-Preservation-Practices-and-the-Rhizome-ArtBase.pdf
http://www.vasulka.org/archive/ExhFOUR/Brno/brno.pdf
http://www.pcworld.com/article/146957/article.html

procedure show (frame)
begin

get_frame {frame)']
convert (frame) ;
display (frame) ;

end

source code
(human readable)

translate
(compile)

.. 0100110110001100011
0011001010001111100
1100011110000011101
1000111111001001001
0100011100110011101
001110100111. ..

object code
(machine language)

Figure I: Translating source code into object code

PASCAL, was not necessarily hardware or software dependent but could be interpreted
through a custom-written program (written in Java). This approach resembles a
combination of both migration and reinterpretation as original elements were transferred
to new hardware and OS platforms while also incorporating new programs in concert
with the original code. The guiding ethos was to recreate, or “emulate,” the original
functions of The Erl King using the most efficient means possible with the least amount
of overhead.10

Of course, we still need to turn our attention towards what emulation means from
the perspective of digital authenticity and how this relates to or differs from compiling,
virtualizing, and interpreting/translating code. Let us first consider two fundamental
differences in how code is written and read, namely source code versus object code.
Source code is generally that which is written by a programmer in a specified language,
which further implies that it is in some way human readable. It uses commands and
values which are programmed to perform a specific function using a controlled
language. Object code is that of the bitstream, encoding the source code commands in
a binary language native to the host computer, otherwise known as the machine
language. This language is “the native tongue of the processor in that computer: it
consists of much simpler commands than those found in most source code.” It follows
that machine code can not adeptly jump from processor to processor given that the
binary language will mean something entirely different. Thus, the source code is what
must be used in order to perform the same computational functions. The act of taking
the human-readable source code and translating it into the language of the native
processor is what is referred to as compiling. The process of compiling source code into
object code is what causes the program to actually run.11

A further analysis of emulation can be found in dissecting this process of
interpretation. Jeff Rothenberg, a strong advocate for the use of emulation in an archival
context, provides a useful analogy in citing the spoken language. Though a translator
and an interpreter are roles which are described somewhat interchangeably, they in fact
differ in a distinct way. A “translator” merely translates one language into another

10 Naturally, the fact that the artists were involved in the reinstallation of the piece insinuates consent for
an evolution of the piece over time. Necessary documentation of possible detours in reinstalling a piece
should be secured from the artists in case the piece is to be reinstalled in absentia.
11 Jeff Rothenberg, “Renewing The Erl King,” 2006. http://bampfa.berkeley.edu/about/ErlKingReport.pdf,
last accessed 12/13/13

http://bampfa.berkeley.edu/about/ErlKingReport.pdf
https://overhead.10

whereas an “interpreter” translates and then performs that action.12 Following this
example we can find a more concise definition of emulation. Once source code can no
longer be compiled into object code on existing hardware, it becomes necessary to
recreate that original hardware as code in and of itself. By translating the means by
which machine code is compiled, you can then create an environment for that source
code to perform its function. Emulation recreates a target/host system through which the
code can be interpreted, in other words it translates code into something more receptive
for a given set of instructions.13 Interpretation would simply be the processes through
which the code is run within the emulation. The Rosetta Stone is a useful analogy in this
context. While the stone exists as a tool for translating hieroglyphics, it uses an obsolete
language to translate it and is bound by the physicality of the stone that carries the
language. We need a human-readable set of instructions that can compile this
information rather than a blocky, proprietary language. This in effect is what happens
when machine code is obsolete and is no longer interpretable - it is nothing more than a
stone.

These examples have shown how hardware emulation is key if we are to perform
the code, particularly given that machine code is native to its original hardware.
However, Virtual Machines offer one slight exception to this rule. Virtualizing and
emulation aim at essentially the same goal but are slightly different in their methods. A
simple explanation is provided by Steward Granger in that “a VM [(Virtualized Machine)]
does essentially the same thing as an emulator, except that an emulator emulates some
other real machine, whereas a VM typically implements a computer that has never
existed as hardware. We usually say that an emulator “emulates” another computer,
whereas we usually say that a VM ‘is implemented’ on a computer.”14

We now see how hardware is essential in running whatever software is desired,
regardless of how the operating systems (OS) and other applications function. However,
there are still important considerations related to OS and applications that must be
considered on top of any necessary emulation that happens at the hardware level as
thus far we have only considered software-emulating-hardware. An operating system
provides the necessary language for making the computer user-operable, namely
providing interfaces, file systems, interprocess communication, and networking (to name
a few).15 Applications are what facilitate rendering of objects and commands at the
program level rather than at the OS macro level and also aid in configuring new
software and add-ons. Naturally, both the operating system and the inherent
applications run on top of the hardware so this must be emulated first. This is not to say
that OS and Applications are not just as essential in emulation but that they must be
grounded upon something stable. A useful analogy in this situation would be plans for
building a bridge. You need two physical points to connect (hence the need for the
bridge in the first place as it extends over a river or ditch) and must be anchored upon
12 Jeff Rothenberg, “Renewing the Erl King,” 2006.
13 Ibid
14 Digitale Bewaring “Emulation: Context and Current Status,” 2003.
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6008E32930A04C717C34832A5319D8F7?doi=
10.1.1.132.5566&rep=rep1&type=pdf, last accessed 12/13/13
15 Ibid

https://instructions.13
https://action.12

Network

Lase, Disl<I

Lase, Oisi< II

Host
Computer

AW/J
Sarrpler

Audio
Mxer

to22PB16H

Video
Monl!Or

MIDI Box

4-Channel
PrJ/ler Amp.

Ligtll
Control Li;lll\S

Maiden

L!.gNt Q.:;\lJOier

Sensors

Ffgura IV-4. MAIDEN System Schemattc

these points. Nonetheless, without that bridge you still have the difficulty of traversing
the terrain. In other words, you may be able to emulate hardware but you will still need a
means of accessing the potential of that hardware and using a language with which to
communicate with the machine.

In the case of The Brotherhood in which several computers are serving
respective and simultaneous parts yet running on a singular network, running emulators
that can also communicate across a network is fundamental. Similarly, the distinct
programs within each piece (commands for video switchers, voice recognition
programs, MIDI adapters) must be configured, and the interfaces with these programs
will also need to be functional. This last example brings up issues of related hardware,
somewhat out of the scope of this discussion but will nonetheless be a consideration in
successive stages of the work plan. Though, at this stage we will dutifully turn our
attention to the specific programs within The Brotherhood and how the language of MIDI
throws one more complication into the mix.

Video Mixer

Ne1work

1 1

1-.1

Host
Computef

Envlrcmment
Lighting

f&Elr.)

fur.)

Drum Machine

Mo11on Sensor11 Camera Sen&ol"li

PICMotor Screen
Controller Rail

PICMotor Proloclor

Controller Rall

MIDI

Figure 111-6. The RAILS System

L
Pattern i
Lighta g

h

Cylinders 1

T
X-Y a

Motor• b
I

Are&Ughlll 8

MICI
Oul

Block Diagram for installation of The Maiden

Block Diagram for Installation of Friendly Fire

The above diagrams demonstrate the centrality of the host computer in the
artwork, which further stresses the importance of machine code emulation for future
installation. Of course, given all the other external elements that must interface with the
hardware, considerations will also need to made for OS and application emulation. As
noted earlier, MIDI is an essential component of this installation. Both diagrams show
how MIDI is used to translate the sensor inputs to the host computer which in turn
trigger the other lighting, video, and audio reactions. Within the technical documentation
for The Brotherhood one finds many documents containing commands written in C,
many of which specify configuration of device drivers for the MIDI system and
necessary ports and startup commands. Given how many programs and peripherals run

This ts the deviice c:1river for thll, MIDI !l,YJS·te.111
Modi tted, tp 4se. rnB'r :Sook.et i:a L LS:
This is a .SERVER, able t,o ai,cept multiple "Hents

Inte.ndeq for use wi tt1 th:e fol L,pwi,ng !

Date:: 1./B/98

unix (Linux) 111,ai,hine. witH m.t\1.iffiill,l (Poi.rt/1\an PC'/S)
Qn Cl)'d,eV /J;U \\, poi.rt

Js;o111pHe wlth (tn,ust use 'the -(imsi.,g eg-c;tm,r dpttpn):
g~ -P 111tdtdd -tunsigneg-e~~r mtd,tdd.~

Note: Mw,t ·run t}tther cit ci Locci L conso Le., from art r ~,R,;tt
from g JS·tC!r,tup Jlcrtpt, or IJSing e.xeu; or else tr"e

QO!jdrate will no't! be obtqlnei:t

in concert with one another, it was necessary for the Vasulkas and Gritzo to create three
separate software packages. MINICOM is a program that configures the host computer
with the MIDI interfaces. Updates to MINICOM across successive instantiations of The
Brotherhood elevated the number of MIDI input values from 128 to 256. INTERCOM is a
program that facilitates configuration in booting up the system and initializing command
sequences. Essentially it wakes up the entire system and ensures that all essential
parts are communicating with the host computer. UNICOM was later developed once
multiple parts of The Brotherhood were displayed simultaneously, networking each
dedicated host computer such that all installations could be activated through one
central booting process. Clearly there is an immense amount of translation and
interpretation occurring in this piece and a successful emulation of the piece will need to
consider all programs, hardware interfaces (and in some cases the hardware itself, such
as obsolete Laserdisc players), and the three essential software programs. For the
purposes of exploring the essential programming language for each individual artwork in
the series of six and the inherent preservable bitstreams, we will solely turn our attention
to MINICOM and the use of MIDI as an I/O protocol.16

Before the invention of MIDI, the discussion of digital music and appropriate
standards for analog conversion was already a major discussion amongst computer
programmers in the late 1970s. The introduction of desktop microcomputers in the early
1980s, most prominently the IBM 8086/8088, established a commercially viable means
for experimenting with synthesized digital music. While at first blush this may seem
coincidental given that the IBM 8086 used the Intel 8086 necessary for Interrupt Service
Routine, one can quickly see how this is also an essential concept in the development
of MIDI and constant streams of executable data. It had already been established that
digital synthesis required a means of translating pressure-wave characters into
numerical samples, fidelity based on both an analog and digital means of representing
rate (frequency) and intensity (amplitude).17 With the new microprocessors, a means of
connecting to a memory bank and peripherals such as, but not limited to, a disk drive,

16 Russ Gritzo, “Brotherhood: All Tools,” 1995.
http://www.vasulka.org/archive/Vasulkas3/Installations/BrotherhoodAll/Tools.pdf, last accessed 12/13/13
17 Peter Manning, Electronic and Computer Music, p. 277, 1993. Clarendon Press: Oxford, New York.

http://www.vasulka.org/archive/Vasulkas3/Installations/BrotherhoodAll/Tools.pdf
https://amplitude).17
https://protocol.16

New on t11D1 ,,_ Cl) WadiJlfllJ

---'"'-~---· -· __ .,_do,u,,,,l ____ ___ .. _, ___ _

" • '8t

alphanumeric keyboard, and visual display was necessary in order to be user-friendly
and self-contained, which furthermore meant that programming could allow for external
musical devices that were complementary to the existing protocols.18 MIDI was originally
designed to be unidirectional across a single cable, sending encoded alphanumeric
messages to the MIDI OUT port, translating these commands into bytes, and then
interpreting these back into the alphanumeric characters at the MIDI IN port. This was
finally realized in the form of the PC/S (Personal Computer/Serial) connection, which in
the case of The Brotherhood would connect MIDI out to the RS-232 port of the IBM
computer.19

As mentioned earlier, the use of MIDI was highly inventive for this project given
its use as a non-musical manifestation but rather as a musical delivery output which was
encoded to yield robotic outcomes based on the contents of the bitstream. MIDI is an 8-
bit protocol meaning that each byte is comprised of a cluster of 8 bits. Bytes can take
one of two forms in a basic MIDI message, or a means of packaging an analog input
into some sort of digital output. These two types are either Status or Data. Status
indicates the type of message being sent, examples being whether the note is on or off
(in other words, indicating the start and end of a single command). Data includes the
content of the message, in most cases the pitch and velocity (volume and degree of
accent) of the note though can go on to include information related to voice, tremolo,
sound dampening, and so on. Furthermore, complete MIDI messages can fall into one
of two categories, Channel Messages and System Messages. The majority of
messages are channel-based in which the discrete values indicate a combination of
pitch and voice effects whereas System Messages include metadata to be encapsulated
in the recorded MIDI file such as source and timing.20

In order to argue for the long-term viability of MIDI as programming language, it must be
held to sustainability standards based on documentation, adoption, transparency, and
dependencies. The Library of Congress’ Sustainability of Digital Formats observes that
MIDI is fully documented and that the format is widely adopted making it likely that it will
be continually supported (particularly in considering how long this format has been
around). It is, however, worth noting that the Library of Congress does not themselves

18 Ibid, p. 278
19 MIDIman, “Portman PC/S Manual,” 1998. http://www.m-
audio.com/images/global/manuals/PortmanPCS_Manual.pdf, last accessed 12/13/13
20 Planet of Tune, “Index of Sequences,” 2013.
http://www.planetoftunes.com/sequence/se_media/message.gif, last accessed 12/13/13

https://timing.20
https://computer.19
https://protocols.18

use or maintain any MIDI digital objects.21 MIDI streams are expressed and recorded in
several different types of file formats. For the purposes of The Brotherhood we are
concerned with some specific formats, including Standard MIDI Format (.SMF),
Downloadable Sounds Format (.DLS), Extensible Music Format (.XMF) and MIDI
executable (.MID). SMF is the most simple file format as it contains a relatively
straightforward and self-sufficient bitstream indicating the instrument that created the
signal and the specs for the message (pitch/velocity in its simplest form). However, this
information must travel along with other file formats for purposes of compiling or parsing
out data contained in the SMF, particular when simultaneously generated messages
need to occur in concert with one another. The DLS, for example, defines the differing
structure and sources of multiple notes that are being sent to the same source, in some
cases occurring at the same time and represented in different voices or timbres.
Information contained in this format help to separate out the individual streams such that
they can retain their individuality from one another. This is furthermore facilitated by the
XMF file which ensures that all related streams travel together along the same pathway
and contains information on synchronicity of the inherent messages. If two notes or two
different voices should occur at the same time, the XMF file will encapsulate this
information.22

Last but not least is the MID file, an executable file format which essentially is
what contains information for enacting this information on the hardware of the computer.
As mentioned the PC/S instrument is necessary for translating the analog output into a
binary stream for decoding on a Personal Computer. On the PC end of things this, of
course, is not an automatic process as the MIDI specs need to be configured to the
system. This requires installation of the MIDI driver on to the OS which is configured to
the .MID format as a delivery device.23 This allows the actual code and the various
means of encapsulating the MIDI stream to run on the related hardware.

Given the highly interdependent nature of MIDI-based files it is clear that
dependencies (in terms of LOC’s Sustainability Standards) become somewhat of an
issue despite the fact that MIDI scores well on all other accounts. In terms of how MIDI
is generally used as a compositional format, its use in The Brotherhood is actually quite
straightforward - it is merely a means of mapping values to outcomes, in this case
matrix value outputs from sensors within a computer program to connect with and yield
specific results from a video sequencer, light control switch, or camera. This meant that
pitch and velocity were often the only data bytes necessary. Given the relative simplicity
of this transmission code, there may be ways to circumvent MIDI if it became absolutely
necessary for reinstallation. While this obviously brings up the issues of authenticity
mentioned along with reinterpretation, I would argue that this is a worthwhile venture if it
is determined that one aspect of the code or software elements is can be isolated and
easily replaced on the back-end. The use of MIDI greatly resembles more common uses
21 Library of Congress Sustainability of Digital Formats, “MIDI File Formats,” 2013.
http://www.digitalpreservation.gov/formats/fdd/fdd000119.shtml, last accessed 12/13/13
22 MIDI Manufacturers Associations, “The Complete MIDI 1.0 Detailed Specification,” 1995-2013.
http://www.midi.org/techspecs/midispec.php, last accessed 12/13/13
23 MIDIman “Portman PC/S manual,” http://www.m-
audio.com/images/global/manuals/PortmanPCS_Manual.pdf

https://device.23
https://information.22
https://objects.21

of Arduinos amongst today’s software-based artists. Arduino is an open-source
electronic prototyping platform, basically a device that can read data from a vast number
of sensors and can be programmed to software for mapping that data to the desired
computational or mechanical output.24 In essence an Arduiono could be used along with
another software program (e.g. Max MSP) to emulate the functions of MIDI.25 The
original controllers such as a keyboard or drum pad could still be used but
supplemented with a more modern means of translating that data to the computer’s
language.

At this stage it might be helpful to harken back to our earlier example of The Erl
King and another example of a successful emulation and reinstallation of a complex
software-based artwork. The Dutch collective jodi created a work entitled Jet Set Willy
interpretations which consequently was displayed along with the “emulated”26 version of
The Erl King at the Guggenheim’s exhibit Seeing Double. Jet Set Willy was a popular
video game in the 1980s specifically designed for the ZX Spectrum computer. The plot
of the games involves Miner Willy who must clean up a mansion the day after a wild
party. Jodi decided to emulate this game for sentimental reasons and also given the fact
that the game was widely modified such that the artists felt that there would be little
litigious backlash (also considering that Seeing Double was staged in 2004, some 20
years after the game was introduced and consequently quickly obsolesced). While the
ZX Spectrum has its own emulator on the market, the piece could not be easily
emulated since the game relied on configuration with the custom-designed keyboard
which was no longer in operation or circulation. The necessary key commands for
creating the game would no longer configure with modern keyboard and there was no
means of emulating these peripheral communications. To circumvent this, jodi worked
with the source code (written in BASIC) through the ZX Spectrum emulator to access
and analyze the machine code, able to edit the code such that it could adapt to modern
keyboards and their inherent commands.27 This is another example of how
reinterpretation is used, and of course authenticity brings up a major concern. However,
an argument can certainly be made for elements within a piece that can easily be
altered without necessarily effecting the piece from an operational standpoint. Of
course, the aesthetics of the piece are changed with a new keyboard or other new
pieces of hardware, but these new implementations are minimally impactful (or at least
as minimal as possible). The artist intention is also of key significance here since they
may agree to a degree of evolution for the artwork and documentation of the original
elements as a means of pointing out their existence is often the only way to ensure this
livelihood.

24 Arduino, “What Can Arduino Do?”
ino.cc/en/Tutorial/Midi?from=Tutorial.MIDI, last accessed

2013. http://arduino.cc/, last accessed 12/13/13
25 Arduino, “MIDI Note Player,” 2013. http://ardu
12/13/13
26 You will recall that The Erl King was not a true emulation but in fact a combined migration and
reinterpretation process. Nonetheless, the behaviors of the artwork and the experience of the artwork was
considered much more significant than the related hardware.
27 Guggenheim Museum, “Seeing Double: Emulation in Theory and Practice,” 2006.
http://www.variablemedia.net/e/seeingdouble/, last accessed 12/13/13

http://ardu
http://arduino.cc
https://commands.27
https://output.24

“Conclusions” or Hypotheses Moving Forward

After examining how emulation works and is used in accessing computer-based
art in an installation setting, and also examining what necessary elements are at stake
in The Brotherhood, it can be deduced that the means of compiling the source code
(i.e. the host hardware) is the most at-risk given the wide adoption of the Linux OS and
C as a programming language. Additionally, the source code is extremely well-
documented but none of this has any value unless it can be interpreted as machine
code. Thus emulation of the Intel 8086 microprocessor is of utmost importance.
Considering that the MIDI protocol was developed along with the 8086, somewhat
ensuring that the original MIDI functions will hold true along with the microprocessing
function, and that the 8086 was continuously used throughout the lifecycle of The
Brotherhood, this may be the silver bullet we are looking for. Fortunately there is an
emulator on the market - EMU8086 - and it comes with a built-in Virtual PC VM for
incorporating a menu of possible operating systems (including Linux). It would seem this
could be a fruitful process, but much work needs to be done to analyze all the various
configurations of MIDI and the other related hardware to ensure functionality. Though, if
MIDI proves to be challenging there is also the possibility of testing an Arduino to see if
this process can also be emulated. This process will naturally need to be vetted against
the artists and their feelings towards reinterpretation but seems like a strong possibility.

Of course, there are still a large number of considerations that lay outside this
analysis that require much more exploration. First, there is the peripheral hardware of
the artwork - the electro-pneutronic sculpture, the roving camera, the MIDI instruments
themselves - that must be maintained and must ultimately communicate with the
software. There is also the bidirectional nature of the programming given that many
inputs and outputs are sending and receiving signals at the same time, all of which must
be fed through the same software. The presence of “in-line code” or code that is fed
back from peripheral machines and computers is often difficult to control in emulation as
was found in some pilot versions of The Erl King (perhaps another reason why they
chose the route of reinterpretation). Additionally, in proposing reinterpretation through
an Arduino there is still the difficulty of communicating across Virtual Machines since
these may not run on the EMU8086 but would need to be run off a network system. In
considering the network, there is also the consideration of the simultaneity of the pieces,
namely the six separate installations that all feed through one server via the UNICOM
software. This along with the booting processes employed by INTERCOM are
necessary as we examine the EMU8086 more closely.

Nonetheless, we have identified a promising solution that considers perhaps the
most essential element of emulation - compiling into machine code. By establishing the
hardware we can ensure that a necessary armature is in place such that further
dependencies can be explored and, based on the exploration of MIDI and the
configuration of the piece, these assumptions are not completely unwarranted. The
immediate thought may be that this illustration serves for the purposes of a reinstallation
of The Brotherhood though this is not necessarily the case. Jeff Rothenberg makes

further claims that Emulation can in fact be thought of as an avenue for “a viable
technical foundation for digital preservation,” looking for solutions to rendering and
access digital objects without the “heroic” efforts of ongoing migration and establishing
new formats and standards.28 Though the process articulated for reinvigorating The
Brotherhood may involve a similar quality of heroism, it is also the safest if not the only
means of ensuring some form of authenticity. As media art works (and, indeed, maybe
all digital objects) become increasingly more complex over time, emulation can be an
example of necessary change with a simultaneous rigor for the past.

Webography

Arduino, “What Can Arduino Do?” 2013. http://arduino.cc/, last accessed 12/13/13

BonaFide OS Development “Interrupts, Exceptions, and IDTs: Part 1 - Interrupts, ISRs,” 2003.

The Committee for Film Preservation and Public Access, “Preservation Without Access Is Pointless,”

http://www.osdever.net/tutorials/interrupts.1.php, last accessed 12/13/13

Vincent Bonin, “Woody Vasulka: The Brotherhood,” 2001. http://www.fondation-
langlois.org/html/e/page.php?NumPage=464, last accessed 12/13/13

1993. http://www.loc.gov/film/pdfs/fcmtefilmprespubaccess.pdf, last accessed 12/13/13

Digitale Bewaring “Emulation: Context and Current Status,” 2003.

Benj Edwards, “Birth of a Standard: The Intel 8086 Microprocessor,”

http://media.rhizome.org/artbase/documents/Digital-Preservation-Practices-and-the-Rhizome-ArtBase.pdf,
last accessed 12/13/13

Ben Fino-Radin, “Digital Preservation Practices and the Rhizome Art Base,”

Guggenheim Museum, “Seeing Double: Emulation in Theory and Practice,” 2006.

Russ Gritzo, “Brotherhood: All Tools,” 1995.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6008E32930A04C717C34832A5319D8F7?doi=
10.1.1.132.5566&rep=rep1&type=pdf, last accessed 12/13/13

http://www.pcworld.com/article/146957/article.html, last accessed 12/13/13

http://www.variablemedia.net/e/seeingdouble/, last accessed 12/13/13

http://www.vasulka.org/archive/Vasulkas3/Installations/BrotherhoodAll/Tools.pdf, last accessed 12/13/13

Russ Gritzo, “ExhFour,” http://www.vasulka.org/archive/ExhFOUR/Brno/brno.pdf, last accessed 12/13/13

Library of Congress Sustainability of Digital Formats, “MIDI File Formats,” 2013.

MIDI Manufacturers Associations, “The Complete MIDI 1.0 Detailed Specification,” 1995-2013.

28 Jeff Rothenberg, “Avoiding Technological Quicksand: Finding a Viable Technical Foundation for Digital

http://www.digitalpreservation.gov/formats/fdd/fdd000119.shtml, last accessed 12/13/13

http://www.midi.org/techspecs/midispec.php, last accessed 12/13/13

Preservation,” http://www.clir.org/pubs/reports/rothenberg/pub77.pdf, last accessed 12/13/13

http://media.rhizome.org/artbase/documents/Digital-Preservation-Practices-and-the-Rhizome-ArtBase.pdf
http://arduino.cc
https://standards.28

MIDIman, “Portman PC/S Manual,” 1998. http://www.m-
audio.com/images/global/manuals/PortmanPCS_Manual.pdf, last accessed 12/13/13

http://www.planetoftunes.com/sequence/se_media/message.gif, last accessed 12/13/13
Planet of Tune, “Index of Sequences,” 2013.

Jeff Rothenberg,
Preservation,” http://www.clir.org/pubs/reports/rothenberg/pub77.pdf, last accessed 12/13/13

“Avoiding Technological Quicksand: Finding a Viable Technical Foundation for Digital

accessed 12/13/13
Jeff Rothenberg, “Renewing The Erl King,” 2006. http://bampfa.berkeley.edu/about/ErlKingReport.pdf, last

http://www.clir.org/pubs/reports/rothenberg/pub77.pdf
http://www.planetoftunes.com/sequence/se_media/message.gif

